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Introduction 
The present Internet is not defined in terms of its semantics, at least at the packet level. 
The loose packet carriage model of “what comes out is what went in” is intentionally 
almost semantics-free. The packets just carry bytes. Packet boundaries can have some 
limited semantics, but not much. The original design presumed some constraints on the 
semantics of packet headers, such as global addresses, but the progress of time has 
violated these and the Internet keeps working. TCP does impose some modest semantic 
constraints, but of course TCP is optional, and not a mandatory part of the architecture. 
 
What defines the Internet, and the range of behavior that is available in the Internet, is the 
expressive power of the packet header, which has more to do with its format than any 
semantics. Most fields (e.g. packet length) are unremarkable, some (like the TOS bits) 
have been redefined several times in the history of the Internet, some (like the options) 
have atrophied, and some (most obviously the IP addresses) have had a most interesting 
history in which the only constants are that they are 32 bit fields, that whatever value they 
have at each end must remain constant for the life of a TCP connection (because of the 
pseudo-header) and that at any locale in the network, they must provide the basis for 
some router action. They can be rewritten (as in NAT), turned into logical addresses (as 
in multicast or anycast), and they can be microcoded in a number of ways to capture 
address hierarchy (net/rest, A/B/C, CIDR). All that really matters is that they are 32 bits 
long, and that at any point, they must have at least local meaning to a forwarding process.  
 
The evolution in thinking with respect to IP addresses is worth some study. The initial 
idea that addresses were drawn from a single global address space and mapped uniquely 
to physical ports on physical machines turned out not to be a necessary constraint, but 
just a simple model to get started.  We were initially fearful that if we deviated from this 
definition, the coherence of the network would fall apart, and we would not be able to 
ensure that the Internet was correctly connected, or debug it when it was not. Indeed, 
these fears are somewhat real, and it is possible today to “mess with” addresses in such a 
way that things stop working. But mostly, the Internet continues to work, even with NAT 
boxes, VPNs and private address spaces, because the consequences of messing with 
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addresses are restricted to regions within which there is agreement to assign a common 
meaning to those addresses.  Those self-consistent regions need not be global. 
 
These regions can be created within the Internet in a number of ways. Routers may be 
coupled by routing protocols running in the background, or by manual configuration. To 
the extent that we have a region of the network in which we deploy a consistent set of 
routing protocols, if we were to rewrite the address of a packet in the middle of this 
region there is no telling in general what might happen. We assumed that to prevent 
packets from looping, we had to add protection against an inconsistent routing 
computation (the TTL). We assumed, as a simplifying assumption, that we did not need 
to reason about what would happen if the address changed. But this line of reasoning (and 
indeed it is a useful and simple line of reasoning) only suggests that the scope of an 
unchanging address should more or less match the scope of a dynamic routing protocol. 
And indeed, even this need not be a rigid constraint.  
 
In the limit, each “region” could just be two routers, the sender and the receiver for each 
hop along the path of the packet. (This would somewhat resemble a scheme based on 
label rewriting.)  Regions this small would be hard to manage without some sort of 
overarching framework for state management (and would have other drawbacks as I 
discuss later), but a single global region—the starting point for the Internet design—has 
also proven to have complexities. In practice, the operational Internet has gravitated to 
regions that represent some sort of rough balance among the issues that arise from big 
and small regions.  
 
The observation I make here, of course, is that the packet header is the fixed point in this 
process.  The limits on this sort of evolution or “gravitation” are what can be expressed in 
the header, not any assertions about the semantics of addresses.  

Per-hop behaviors 
We can generalize from this discussion of addressing and ask more abstractly about the 
local behavior of routers and the resulting overall function.  In fact, the network is built 
up of somewhat independent routers. What we care about is that the local behaviors (the 
“per-hop behaviors”, or PHBs) of these routers compose to achieve the desired results 
end-to-end. If the packets get delivered (which is really the only thing that defines 
today’s properly operating Internet, except in the context of defense against attack), then 
it does not matter how the PHBs were coordinated, if at all.  If the packets do not get 
delivered, then debugging may be more or less a nightmare, depending on the tools for 
coordination and analysis, but this is a separate issue (see below).  
 
Today, a router has a rather simple set of behaviors. Ignoring QOS and source-routes for 
the moment, a router either picks (one or more) outgoing paths on which to forward a 
packet, or drops it. The router can have as much state as inventive people define for it—
static and dynamic forwarding tables, complex routing protocols, and static tables that 
define unacceptable addresses (e. g. so-called Martian and bogon packets). The router can 
also rewrite the packet at will, subject to the pseudo-header constraint. But looking to the 
future, not all elements in the network need be “routers”. Elements, once they receive a 
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packet, can perform any PHB that does not cause the end-to-end behavior to fail.  So 
when we consider PHBs as the building block of network function, we should be careful 
not to limit ourselves to a model where the only PHBs are “routing” or “forwarding”.  

Tussle 
One of the distinctive features of networks and distributed systems is that they are 
composed of actors whose interests are not aligned. Sometimes one of the actors is a clear 
“bad guy”: e.g. someone wants to infiltrate my computer against my wishes. This tension 
leads to devices such as firewalls, which are an example of a PHB that is not simple 
routing, but forwarding or dropping based on the content of the packet. Firewalls are an 
attempt by the receiver to overrule the intentions of the sender: a PHB that the receiver 
wants executed on the packet, but the sender does not. 
 
Sometimes the issues are not black and white, but more nuanced I want a private 
conversation, law enforcement wants to be able to intercept any conversation with proper 
authorization. I want to send a file privately, copyrights holders want to detect if I am 
serving up infringing material. To the extent these tussles are played out “in the net” (as 
opposed to end the end-nodes or the courts), they will be balanced through the relative 
powers of the different actors to exploit the expressive power of the network.  So our 
discussion of expressive power, and the tools that implement it, will be strongly shaped 
by the reality of tussle.  

What can (and cannot) we do? 

Is there a formalism? 
Computer scientists are accustomed to thinking about the implications of semantics: what 
are the limitations of some semantic construct. We are less accustomed (and less 
equipped with tools) to think about the expressive power of a packet header—what 
functions are consistent with some format. It is sort of like asking what ideas can be 
expressed in sentences of the form “subject, verb, object”. The question seems ill-defined 
and unbounded. Even harder is to catalog what cannot be expressed. But this question is 
the one that actually captures the limits of what the Internet can and cannot do. So we 
should try to think about how to think about it.  
 
If  (in general) a network element can be programmed to do “anything” as its PHB, then 
the resulting overall function is the result of the execution of these PHBs in some order, 
where the order is defined by the routing of the packet among these devices. Of course, 
since the devices themselves can define the routing, the resulting expressive power (the 
computational power, if you will) is presumably rather complex.  
 
This view of packet processing has not been seriously explored (with the exception of 
some of the Active Network research), because in the Internet of today, the overall 
function we want to achieve is very simple—the delivery of the packet. If that is the 
desired overall function, there is not much demand for the complex concatenation of 
arbitrary PHBs within the network.  But as we think about wanting to do more complex 
things as a packet moves from source to destination (many having to do with security), 
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the range of interesting PHBs will grow. So it is worth some consideration of what 
factors define or limit the expressive power of a network.  

A framework for PHB execution 
 
In this section, I pose a three-dimensional model that describes the landscape of PHB 
execution: delivery, alignment of interests and parameterization. 

Delivery 
The first dimension of the model is to ask why or how the packet arrives at the element 
that implements the PHB. There is a simple model that covers most of the circumstances 
that cause a packet to arrive at an element in the network. I will propose three cases, 
which I call intentional, contingent, and topological.  
 
Intentional:  In this case, the packet arrives at the element because it was specifically 
sent there. For example, with source routes, the route is a series of addresses, each of 
which directs the packet to the next such router. As another example, a packet arrives at a 
NAT box because it was intentionally sent there.  
 
Contingent: In this case, the packet may or may not arrive at a given element, but if it 
happens to arrive, then the PHB will occur. This is the basic mode of datagram routing. 
There are no pre-established paths from source to destination (which would be examples 
of intentional delivery). Each router computes routes to all known destinations, and if a 
packet happens to show up, the router forwards it.  
 
Topological:  In this case, there is nothing in the packet that causes it to arrive at a 
particular device, but instead the topology of the network (physical or logical) is 
constrained to insure that the packet does arrive there. Firewalls are a good example of 
topological delivery. The sender (assuming he is malicious) has no interest in 
intentionally sending his attack packet to a firewall. He would prefer to route around it if 
he could. The receiver wants some assurance that the firewall will be in the path. The 
receiver will normally not be satisfied with contingent protection. So the remaining tool 
available is to constrain the connectivity or routing graph so that the only path (or paths) 
to the receiver pass through the firewall.  

Alignment of interests 
The second dimension of the model is to capture the relationship between the sender of 
the packet and the owner of the element that implements the PHB. This dimension 
directly captures the nature of tussle. Again, I will propose three cases: aligned, adverse 
and coerced.  
 
Aligned: In this case, the interests of the sender and the element match. Simple routing, 
multicast, etc., usually falls in this obvious class. The sender sent the packet, the router 
forwards it, and this is what both parties expected.  
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Adverse: In this case, the PHB performs a function that the sender does not want. A 
firewall is a good example here, as would be other sorts of content filtering, deep packet 
inspection, logging and so on.  
 
Coerced: This can be seen as a special case of an adverse relationship in which the 
sender is required to conform with the requirements of some sort of PHB (or even agree 
to intentionally send the packet to the location of the PHB), even though the interests of 
the sender and the owner of the PHB are adverse. In this case, we can expect the sender 
to cheat or lie (in terms of what values are in the packet) if it is possible.  
 
In passing, it is worth asking why I looked at the relation between the sender and the 
PHB, but not the relation of the receiver and the PHB. This is because sending packets is 
asymmetric in an obvious way—only the sender can directly control the sending of the 
packet. There are special cases that can be explored where the receiver can exercise some 
control (e.g. in cases of multi-homing or anycast, which I consider later). If the interests 
of the sender and receiver are aligned, then if there is an adverse PHB in the path, it must 
be there because of some third party (e.g an ISP or a government authority, etc.). If the 
interests of the sender and the receiver are adverse (e.g. the sender is an attacker), then 
the most common case is that the PHB in question is aligned with the receiver (e.g. a 
firewall). 

Parameterization 
The third dimension of the model is that the packet triggers the execution of a PHB, and 
thus the data in the packet is in some sense the input to that PHB, like arguments to a 
subroutine. The values in the packet are the input parameters to the PHB, and if the 
packet is modified, this is similar to the rewriting of variables in the invocation of a 
subroutine. (In other words, to use the vocabulary of programming language, the packet 
invokes the PHB by reference rather than by value.) The element that executes the PHB 
can have lots of persistent state (which can be modified as a result of the PHB), and can 
have distributed or “more global” state if suitable signaling and control protocols are 
devised. 
 
In this context, I will again offer two cases, although these more define ends of a 
spectrum than distinct modes: explicit and implicit. 
 
Explicit: While the PHB can in principle look at any data fields in the packet, in common 
cases there will be specific fields set aside in the header as input to specific PHBs. This is 
the common case for packet forwarding: since packet forwarding is the basic operation of 
neworking, there is an explicit address field used as input to the forwarding lookup. The 
Internet (sometimes) supports QoS, so there is an explicit field in the packet that is the 
input argument to the QoS algorithm.  
 
Implicit: In other cases, there is no specific field used as input to the PHB: the PHB 
looks at fields intended for other purposes. Firewalls block packets based on port 
numbers, some ISPs assign QoS based on port numbers, packets are sometimes routed 
based on port numbers (e.g. when Web queries are deflected to a cache or an outgoing 
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SMTP connection is deflected to a local mail server.) If the PHBs have state, they can 
also base their actions on implicit information such as the arrival rate of packets.  
 
This model suggests that there is some rough analogy between the expressive power of a 
network and a programming language of some sort, where the “computation” is a series 
of subroutine executions, driven by the input parameters carried by the packet, and where 
the order of execution is defined by the routing protocols, together with the expressive 
power of the packet to carry the addresses that drive the forwarding. Of course, the 
addition of tussle and nodes that are hostile in intent with respect to the sender adds a 
twist that one does not find in programming languages, and in fact this “twist” may be 
one of the most important aspects of what the network actually “computes”. So the power 
of an analogy to a programming language remains to be explored. 
 

Pruning the space of options—tussle analysis.  
What I just described is a 3x3x2 design space. But in fact it is less complex than that. The 
starting dimension that helps to sort out this space is the one of alignment of interests.  
 
Aligned: If the sender wants the PHB to be executed, then intentional delivery and 
explicit arguments make sense. Contingent delivery may be suitable in some cases (e.g. 
the basic forwarding function), but explicit arguments (e.g. the address field) still make 
sense.  
 
Adverse: If the sender does not want the PHB to be executed, then he cannot be expected 
to provide any explicit arguments to the PHB, so the design must be based on implicit 
approaches. Nor can the PHB count on intentional delivery, so contingent or topological 
delivery must be used.  
 
Coerced: In this case, the PHB may be able to demand explicit arguments, but the sender 
can be expected to lie if possible. So there must be some sort of other (usually implicit) 
inputs that can serve to police the explicit inputs.  
 
So the common design options will be: 
 
 
Aligned: 
 Explicit 
  Intentional or contingent 
 Implicit (less common) 
  Contingent or topological 
 
Adverse: 
 Implicit 
  Contingent or topological 
 
Coerced: 
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 Explicit 
  Topological 
 Implicit 
  Contingent or topological 
 

Implementation considerations 
Implicit arguments can be expensive. In the worst case (deep packet inspection), the PHB 
may process the entire contents of the packet as input to its operation. Clearly, this is not 
as efficient as a pre-designed action where the PHB picks a preset field (e.g. an address 
field) and uses this for a table lookup. So implicit arguments must be used sparingly.  

Prior work 

Role-based Architecture 
The proposal for a Role-based Architecture (RBA) (Braden, Faber et al. 2003) is perhaps 
the closest example of an architecture that captures the idea of general PHBs and the 
expressive power of a packet header. In this proposal, PHBs are called roles, and the data 
that is input to each node is called the Role-specific Header, or RSH. The packet header 
is described as a heap of RSH’s.  RSH’s are an example of explicit arguments. The 
proposal discusses both intentional and contingent routing, where the intentional 
addressing would be based either on the ID of a role, or the ID of a role at a specific 
node. The paper does not delve into tussle to any degree, or work through the case of 
roles that are adverse to the interest of the sender, so there is not much attention to 
implicit arguments or to topological delivery. However, the idea of a network as a 
sequence of computations performed on a packet based on explicit input arguments is the 
core concept of role-based architecture.  

Case studies: what has and has not worked 

Mobility 
Host (and network) mobility is a well-known and well-studied problem. In today’s 
Internet, dealing with mobility is complicated by the fact the IP address is used both for 
forwarding and for end-node identity. Separating these two concepts into two different 
data fields in the packet will allow the location field (e.g. that data that is input to the 
forwarding RBA) to be changed as the mobile host moves. This division does not solve 
the two resulting problems: how to keep the location information up to date, and how to 
make sure the identity information is not forged. Linking identity to location provided a 
weak form of security: if two machines have successfully exchanged packets, the location 
is sufficiently unforgable that it can stand as a weak identifier. But by separating the two 
problems, they can each be resolved separately, and managed differently in different 
situations as circumstances require.  
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NAT boxes 
NAT boxes are a wonderful example of how one can disrupt two of the most fundamental 
assumptions of the original Internet and still have enough functions mostly work that we 
accept the compromise. The assumptions of the original Internet were that there was a 
single, global address space, and there was no per-flow state in forwarding elements. 
NAT boxes, of course, have per-flow state, and lacking a protocol to set up and maintain 
soft state, they depend on a “trick”: they use the first outgoing packet to set up the state, 
which then persists to allow incoming packets to be forwarded.  
 
This “trick” does not allow state to be set up for services that are “behind” the firewall, so 
that the first packet can be an incoming one. To allow the forwarding of incoming 
packets, today one must resort to manual setup of the state. However, it is easy to 
imagine that if there were some scheme to allow end-nodes to set up state along the path 
to them, it would be straight-forward to manage the full range of forwarding tasks done 
by NAT boxes. 

Firewalls 
Firewalls, as I described above, are an example of a PHB that is hostile to the interests of 
the sender (the potential attacker) and thus must depend on implicit information. The 
firewall has the poorly-defined task of trying to distinguish “good” from “bad” behavior, 
based on whatever hints can be gleaned from the packets. Normally, all a firewall can do 
today is a very crude set of discriminations, blocking traffic on certain well-known ports 
and perhaps certain addresses. The roughness of the discrimination is not necessarily a 
consequence of the details of the current Internet, but perhaps the intrinsic limits of 
making subtle discriminations based only on implicit fields in the packets.  
 
This outcome is not necessarily a bad thing. Sometimes users want the blocking to 
succeed (when they are being attacked) and sometimes they want it to fail (when some 
third party such as a conservative government is trying to block their access to other sites 
on the Internet). If we decide to make the job of the firewall easier, we should consider 
whose interests we have served.  

Tunnels 
Tunnels, or packet encapsulation, is often thought of as a way to control the routing of a 
packet, but more generally it is a way to interpose an explicit element in the path toward a 
destination. The encapsulated packet is the explicit information used as input to the end-
point of the tunnel. Sometimes the starting point of the tunnel is contingent or 
topological; some times it is coincident with the sender. For example, TOR2 can be seen 
as an example of nested tunnels, each with explicit information as input to the PHB at 
each TOR forwarder.  

                                                
2 See www.torproject.org 
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Indirection schemes and credentials in packets  
Recently, there have been a number of proposals (Andersen 2003; Stoica, Adkins et al. 
2004; Yang, Wetherall et al. 2005) to improve the security of services on the network by 
interposing some sort of checkpoint or intermediate relay in the path from the client to 
the server. This relay can permit or deny access based on the rights of the client,  or 
perhaps rate-limit or otherwise constrain clients as appropriate. These devices depend, in 
general, both on state stored in the relay and additional information in the packets. Since 
there are no fields to carry this information today, such schemes are required to build on 
such fields that already exist (implicit inputs, to use the term above), although this is a 
clear example where explicit fields would help, or else the schemes depend on some form 
of clever encapsulation.  

IP options  
The original IP specification contained the concept of IP options—fields that could be 
defined and used as needed to carry additional information in the IP header. Over time, 
the IP option mechanism has fallen into disuse, and it is worth considering why. It might 
seem that the IP option would fall into the explicit class of input, but the processing of the 
field was still inefficient, because the forwarding device had to parse all of the options to 
see if one of then represented an input it was to use for its PHB.  The router had to 
process a variable-length field of unpredictable contents, and this was too much 
computation for a high-performance packet forwarding path; it was almost like deep 
packet inspection.  
 
So the lesson is that any suggestion for augmenting packets with additional fields that can 
be used for explicit inputs to PHBs needs to be very sensitive to performance and 
efficiency issues.  
 

Learning from experience—what could we do better next 
time?  
Addressing 
It is generally recognized that the current approach of using the IP address both as a 
locator and as an identifier is incorrect. There should be two fields, or perhaps three, each 
serving a distinct purpose.  
 
Locator: This field is used as input to the forwarding PHB of a router. It may be 
rewritten (as in a NAT device), highly dynamic (in the case of a mobile device) and so 
on.  
End point Identifier (EID): This field is used by each end of the connection to identify 
itself to the other end(s). There are in general three issues with such a field: how to make 
sure a malicious sender cannot forge a false identifier, how each end associated meaning 
with this field (is there some sort of initial exchange of credentials associates with the 
EID, or do high-level protocols associate some meaning with it once the connection is in 
place), and third, should elements other than the end-nodes (e.g. PHBs in the network) be 
allowed to see and exploit this value? 
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In-network identifier (INID): if the decision is taken that the EID is private to the end-
nodes of a connection, then there may be need for some other identifier that can be seen 
and used by PHBs in the path from the sender to the receivers. This possibility raises 
many sub-questions in turn.  
 
So while the general idea of the locator-identity split is well understood, there is no clear 
agreement on how to design the system that would result. This would be a challenge 
question for a future Internet.  

Packet size 
In the early days of the Internet, it was necessary to exploit communication channels that 
had been designed for other purposes. One consequence of this fact was that some 
technologies could not handle “normal size” packets, and packets had to be fragmented 
into smaller parts to be carried over these channels. Since in general it is less efficient to 
handle smaller packets, there was pressure to make packets larger in the normal case. 
This tension led to various mechanisms such as Maximum Transmission Unit (MTU) 
discovery protocols.  
 
As the Internet has grown up and become the dominant mode of data transport, the need 
to deal with “unusual” communication channels has faded. Today,  network technology is 
designed to support the Internet. So it would seem that we should be able to take a more 
simple approach to packet size, which is just to set a standard number. However, since 
encapsulation and other sort of header extensions (present and future) will cause the 
packet header to grow and shrink, a future Internet must still think about how to deal with 
packet size.  

Signaling and state setup 
In the original Internet, the designers avoided any hint of a signaling protocol or setting 
up per-flow state in the routers. There were several reasons for this preference. One was 
simplicity—if we could do without we would avoid yet another thing that could go 
wrong. In particular, once per-flow state is instantiated in a router, then it has to be 
managed. When should it be deleted? What happens if the router crashes?  The simplicity 
of the stateless model makes it easier to reason about resilience and robust operation.  
 
Another reason is overhead. It seems a waste to go the overhead of setting up state for an 
exchange that may involve only one packet. Much better to have a system in which the 
sender can “just send it”. But if this works for one packet, why not for all the packets?  
 
However, the fact that PHBs include more than simple forwarding change this equation. 
Per-flow state might only be needed in specific elements to deal with special cases. 
Second, we are now dealing with per-flow state (e.g. in NAT boxes) whether we design 
for it or not. And some emerging ideas such as indirection schemes depend on per-flow 
state. So it seems worth revisiting this design decision.  
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Design options for packet headers 
If there seems to be some value (some increase in function or generality) from the ability 
to provide richer input data to a PHB, it is worth at least briefly speculating on how this 
might be done.  

Blank “scratch-pad” in the packet 
A simple idea is to leave a fixed, blank area in the packet header, to be used creatively 
from time to time. One need only look at all the creative ideas for reuse of the fragment 
offset field to appreciate just how powerful a little extra space can be. To avoid the issues 
that arose with the IP option field, the expectation for this field should be that a 
contingent element would not normally look at it. Only elements that have the specific 
requirement for an input value would parse the field. This might most easily be 
implemented as a rule that says only the intentional recipient of a packet will examine the 
scratch-pad area.  
 
The drawback of this scheme is that there might be more than one PHB along the path 
from the sender to the receiver, so there might be a conflict as to how the scratch-pad 
should be used. So we might consider a more complex scheme. 

Push-down stack model 
A more complex model for explicit data in packets is a pushdown stack of records of 
explicit data, carried as part of the packet header. In this model, the packet is explicitly 
directed by the sender to the first element that should perform a PHB using data from the 
packet. That element (conceptually) pops the first record off of the stack of explicit 
information and uses it as input to the PHB.  Then, using either stored PHB state or 
information in the record that was just popped off the stack, it identifies the next element 
to which the packet should go. This PHB can push a new record onto the stack, or leave 
the one provided by the original sender, based on the definition of the intended function.  
 
Issues of performance would suggest that the design would not literally pop a record off a 
stack (thus shortening the packet and requiring that all the bytes be copied.) A scheme 
involving offset pointers could be devised that would achieve the desired function.  
 
One way to describe the problem with the IP option was that it was conceived more in the 
spirit of contingent execution rather then intentional execution. The sender sends the 
packet addressed to the destination, and routers along the path can look at the options to 
see what they are supposed to do with it.  In the context of aligned interests and per-flow 
state, we can see a movement toward intentional delivery of packets to nodes with 
specific PHBs. The push-down stack model (and the more simple scratch-pad model) are 
more attuned to the intentional delivery model.  
 
This sort of mechanism seems to build on the rough analogy between PHB sequencing 
and some sort of programming language. And packet encapsulation is a rough version of 
a push-down mechanism, in which the whole header is “pushed” onto the stack by the 
encapsulating header.  
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A heap 
The proposal for RBA (see above) includes the idea of the packet header as a heap of 
role-specific headers, or RSH’s. The implication of the heap is that the roles are not 
always executed in a pre-determined order, so the idea of push and pop is too 
constraining.  

Per-flow state 
The discussion to this point has more or less described a pure datagram scheme, in which 
each packet is treated in isolation. Per-flow state in the router can enrich the range of 
PHBs that can be invented, by linking the treatment of different packets in a sequence. 

State initiation bit 
If we are prepared to consider per-flow state as part of the design, we need to consider 
whether the protocols should include a standard way to establish and maintain this state. 
The original preference in the Internet design was to avoid an independent control plane 
as a mandatory component of the network. (Of course, there is no way to prevent parties 
from attaching controllers to the network if they choose to.) The original design 
preference was to carry control information (to the extent that it existed at all) using 
fields in the data packets, which flowed along the data forwarding path. It is possible to 
imagine a similar scheme as a standard means for an end-node to establish and maintain 
per-flow state in intermediate elements.  
 
Such an idea would enrich the expressive power of the packet header by building the idea 
of state establishment into the design, which would link the treatment of a succession of 
packets.  
 
Without claiming that all the details are worked out, one can imagine that just as TCP has 
a state-establishment phase and a connected phase, protocols that establish state in 
intermediate elements could follow the same pattern. A bit in the header (similar to SYN) 
could signal that the packet contains state-establishment information. This packet might 
require more processing overhead (and thus represents a vector for DDoS attacks), but in 
normal circumstances would only be sent at the initiation of a connection. Once the state 
is established, some much more efficient explicit indication in the packet could link 
subsequent packets to that stored state.  The two sorts of packets could have different 
formats.  

Maintaining state in intermediate elements 
 
Assuming that the state is soft-state (a choice that could be debated), the protocol should 
include a means to reinstate the soft state if it is lost. One could imagine a new sort of 
ICMP message signaling that some expected state is missing. To recover from this, the 
sender would have to transition back from a fully “connected” mode into a state-setup 
mode.  One could imagine that the sender could re-establish the state in two ways. First, 
it could do so “from scratch” by sending whatever initial information was used. Second, 
the intermediate node that holds the state could send back to the source a bundle (perhaps 
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encrypted) that could be used to re-establish the state efficiently. This could be re-sent 
from the source on demand.  
 
Such a scheme might make sense in the special case of intentionally sending a packet to 
an anycast address. In this case, the sender is making a deliberate decision to send to this 
intermediate entity, but the actual physical machine implementing the service might 
change. In this case, it might be necessary to reestablish some state in that box.  
 

In-network state associated with receivers 
The discussion above covered the case of a sender establishing state along a path as part 
of session initiation. But an equally common case is state set up along a path that arises 
from the receiver rather than the sender. Setting up and maintaining this state is actually 
the trickier part of the scheme.  
 
As an illustration of the problems, consider the case discussed above, where, as a part of 
protecting the receiver from attack, connection validation is outsourced to a set of 
indirection elements. Since a sender (either legitimate or malicious) may connect to any 
one of these (perhaps using an anycast address), every one of these elements must have 
available the information necessary to validate all acceptable senders, or else there must 
be an authentication protocol for those devices to send off credentials to a back-end 
service. At a minimum, the protection devices need to be able to find this service.  
 
In practice, this pattern sounds more like hard state, somewhat manually set up and torn 
down, rather than dynamic soft state.  
 
In other cases, soft state may make more sense. A transient service behind a “firewall of 
the future” may want to open an incoming port (assuming that a future network has ports, 
of course), and this may best be done as a dynamic setup of soft state. In this case, 
mechanisms will need to be provided to make sure the state is still in place, even though 
the receiver is not necessarily sending any data packets.  

Security of architectures with rich expressive power 

Protecting the explicit data 
Once we introduce the concept of explicit data carried in the packet and used as input to 
various PHBs in the communication path, we have to ask about the security implications 
of this data.  The classic triple of  “confidentiality, integrity, availability” is a useful place 
to start. Another summary is “that which is not encrypted can be seen, that which is not 
signed can be changed”.  
 
Using the proposal for a push-down stack of records of explicit data for different PHBs, 
we can see a number of issues. The problem of gross corruption of the header is perhaps 
beyond the scope of this note—if an element is that malicious, the outcome is the same as 
a failure to forward, which is a more general problem. The more interesting question is 
spying on the information, or more purposeful modification of information on the stack, 
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to somehow break a PHB further along the path. To prevent this, in the extreme, each 
record on the pushdown stack could be encrypted using a public key of the element in 
question. This implies considerable processing overhead, and some way to get the right 
public key reliably. The overall complexity is somewhat similar to a client using the TOR 
system, so we do have evidence that users are willing to tolerate this overhead.  
 
However, in some cases, it may be desirable for one PHB to modify the input data for a 
subsequent PHB, so the approach taken to secure the data should not be inflexible.  

Protecting the intermediate elements from attack 
Once we recognize the existence of intermediate elements (and their PHB) as a part of 
the architecture, we have to take methodical steps to deal with attacks on these devices 
themselves.  
 
These devices are perhaps (often?) simpler than general purpose operating systems, and it 
may be possible to engineer them to a higher standard of resistance to penetration attacks. 
To the extent that these are “first line” elements—exposed to the full open Internet as 
interfaces to resources behind them, it will be necessary to engineer them to a high 
standard of penetration resistance. 
 
More generally, we have to ask about DDoS attacks against these devices. For example, 
if indirection services are deployed to protect servers from DDoS attacks, those services 
themselves will be attacked if this provides a way to disrupt access to the service itself. 
So the ability to protect “first-line” elements from DDoS attacks is a general problem the 
architecture should solve.  
 
Having said that, there need not be only one way to control these attacks. The point of 
this focus on syntax is to allow diversity in the underlying semantics, including how 
forwarding is done and protection is implemented. But one general idea that seems to 
have merit is to give such elements anycast addresses. If the elements are replicated and 
have only anycast addresses, then any DDoS attack will be diffused across the replicated 
elements. Services requiring a higher degree of protection can subscribe to indirection 
services with a higher degree of replication.  
 
There will no doubt be many consequences of replicating an element that serves to 
protect servers from unwelcome users. Most obviously, if the element depends on soft 
state, then if a legitimate user is moved from one replica of the element to another, the 
soft state will have to be reconstituted. This requirement is one of the motivations behind 
the earlier discussion of maintaining soft state.  

Protecting legitimate communications from attack. 
As we add capabilities for the sender to add more expressive explicit data to the packet 
header, the possibility arises that third parties “in the network”, with interests adverse to 
both the sender and receiver, and with topological control, will be able to use the 
available mechanisms to coerce explicit information from senders as a condition of 
usage. For example, a conservative government might demand that some explicit 
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identifying information be added to the packet as a condition of making a connection out 
of the country. Today, there is no practical way to demand that, exactly because the 
packet header is not expressive enough. As we make the header more expressive, we 
have to consider how we have shifted the balance of power among the various actors. 
This consideration fits into the larger discussion of tussle below.  

Reasoning about generality 
The various examples discussed earlier suggest that intermediate PHBs are used in two 
common ways. One is to achieve better control over forwarding and routing—e.g. 
mobility and tunnels. The other use is to provide various sorts of protections for a 
receiver that does not want to be fully attached to the open Internet and fully vulnerable 
to arbitrary attack. In the first case, we can assume that the interests of the parties are 
aligned. By allowing users to exploit more flexible options for forwarding, it would seem 
that such services enhance generality.  In the second case, we can assume (since the 
interests of the parties are adverse) that the forwarding will be constrained topologically,  
and the relationship is the one I called coerced—the sender, to reach the receiver, is 
required to pass through some sort of first-line PHB, and is required to present some sort 
of explicit information. A successful design will insure that this requirement is not too 
much of a burden for a valid user, but is sufficiently robust that a malicious user is 
deflected. Of course, the details of this will depend on the specific circumstances of the 
final receiver—whether it is prepared in principle to talk to anyone or interested only in a 
known group of clients. 
 
Such restrictions are in principle the opposite of generality—they intentionally preclude 
certain classes of things from happening. However, looking only at the level of syntax 
and header construction, as we have done here, it seems unlikely that we can provide 
rules to tell good from bad behavior.  Such restrictions are the opposite of availability as 
well; they deliberately make it impossible to do something. Since the high-level goal of 
availability is to “route around” flaws, topological restrictions must be balanced against 
the resulting reduction in diversity.  

Tussle and regions 
Consider the example discussed above of a firewall, put in place by the receiver to block 
attacks by the sender.  In this adverse circumstance, the receiver must depend on implicit 
arguments and topological routing. For this to work, the region of the network within 
which the receiver is located must provide enough control over topology (connectivity 
and routing) to ensure that the firewall is in the path of the packets.  
 
To generalize, what this illustrates is that different actors within the network (the sender, 
the receiver, the ISPs, other third party participants) will have the right to control certain 
parts of the network (or the expectation that certain parts will be operated consistent with 
their requirements), and within each such region of the network, the expressive power of 
the parts found there (the PHBs and the routing) will be used to further the intentions of 
that actor.  
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The factor that will determine the outcome of the tussle (e.g. the balance of power) is not 
the PHBs (which, as we noted, can be more or less anything), but the information in the 
packet that can serve as the input to the PHB, and the order of processing of the packet.   
 
The order of processing arises from the natural nature of packet forwarding: the packet 
originates in the region of the sender (who thus gets first crack at any desired PHBs), then 
enters into the global network, and finally enters into the region of the receiver and the 
PHBs found there. The information that is in the packet at each stage is a consequence of 
this ordering. For example, the sender can include data in a packet that is used by the 
PHBs in the region of the sender and then stripped out so that the other regions cannot 
see it. While the packet is in the global “middle” region, some or most of the packet can 
be encrypted to prevent it being examined, and so on.  
 
But as I have noted, PHBs can do more or less “anything” that can be derived from the 
information in the packet, and the routing is under the control of each of these regions. 
The fixed point in this design is the packet header itself. So when we think about putting 
more or less expressive power into the header (e.g. a more or less expressive format), we 
should consider whether the different options shift the balance of power in ways that 
match our preferences.  
 

Debugging 
All mechanisms fail. Complex mechanisms fail complexly. If we design a network that 
permits all sorts of complex routing options and invocation options for PHBs, the 
potential for failure will certainly go up. Tools to debug and recover from such failures 
will be critical if we are to meet goals of availability and usability.  
 
PHBs that are contingent are the hardest to debug, since the sender did not invoke them 
intentionally.  The idea of invoking explicit mechanisms to try to diagnose a failure in a 
box the sender did not even know about is troubling. This fact suggests that when 
effective diagnosis is desired, the design should prefer intentional invocation of PHBs.   
 
If the interests of all parties are aligned, it would make sense that the tools for debugging 
would be effective and useful. However, if the interests of the parties are adverse, the 
situation becomes more complex. If for example, an attacker is being thwarted by a 
firewall, it may be in the interest of the firewall to prevent any sort of debugging or 
diagnosis of the failure. The goal (from the point of view of the defender) is to keep the 
attacker as much as possible in the dark as to what is happening, so as to prevent the 
attacker from sharpening his tools of attack. So while tools and approaches for debugging 
and diagnosis must be a part of any mechanisms to provide expressive power for a FI, 
tussle issues must be taken into account in their design.  
 
(Certain classes of failure are easy to debug, even for contingent PHBs. Fail-stop events 
that cause the element not to function at all can be isolated and “routed around” just like 
any other router failure. “Fail-go” events do not require diagnosis. It is the partial or 
Byzantine failures of a contingent PHB that may cause diagnosis problems for the sender. 
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It is for this sort of reason that intentional invocation of PHBs is to be preferred unless 
the goal of the PHB is to confound the sender.) 
 

Evolvability 
In this context, the term evolvability refers to the ability of the network architecture to 
survive over time and evolve to meet changing needs while still maintaining its core 
coherence. The history of the Internet provides some informative case studies.  
 
In the early days, the designers of the Internet thought that the concept of a single global 
address space was part of the Internet architecture, and we bemoan the emergence of 
NAT devices, VPNs etc, as an erosion of the architectural coherence of the Internet.  To 
some extent this is true; NAT makes the deployment of passive services behind the NAT 
barrier more complex, and leads to such inelegancies as STUN. On the other hand, it is 
also clear that in the large, the Internet has survived the emergence of NAT, and perhaps 
global addresses did not need to be such a central assumption of the presumed 
architecture.  
 
Perhaps less mourned but more relevant is the atrophy of IP options. IP options were hard 
to process in the fast path of routers, and were deprecated in practice to the point where 
they are essentially gone. IP options were developed to allow for future evolution of the 
architecture, and they could have provided a substantial degree of expressive power. 
They vanished. One could speculate about the implications of this fact: 

• This degree of expressive power is not in fact necessary, and made the network 
over-general.  

• IP options were not well designed, and required much more processing than a 
better-designed option.  

• The loss of IP options represents an un-orchestrated decision to favor short-term 
cost reduction over future evolvability.  

 
Whatever the mix of actual reasons is, one can learn two lessons from the above.  
 
First, avoid mechanisms that are costly to maintain when they are not needed. For 
example, if there are fields in packets that are used to carry “extra” input values to PHBs, 
design them so that only the device that actually implements the PHB has to parse those 
fields or otherwise pay any attention to them. If the packet is intentionally addressed to 
the device, then the processing rule is clear: if the packet is not for you, don’t look at the 
extra fields.  
 
Second, any mechanism added to a packet header should have at least one important use 
from the beginning, to make sure that the implementation of the mechanism remains 
current. If designers propose something intended to facilitate evolution, but cannot think 
of a single use for it when it is proposed, perhaps it is overkill. 
 
Finally, the addition of tools to promote evolvability  may shift the tussle balance, so 
enthusiasm for rich expressive power may need to be tempered by a realistic assessment 
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of which actors can exploit that power.  Indeed it would seem that the goal of evolution 
over time is inseparable from the goal of operating in different ways in different regions 
of the network at the same time, in response to different perceived requirements within 
those regions.  

Conclusions 
Making design choices about the potential expressive power of an FI seems to call for a 
tradeoff between evolvability and flexibility on the one hand, simplicity and 
understandablity on the second hand, and tussle balance on the third hand. However, 
there is no reason to think that this tradeoff is fundamental. Creative thinking might lead 
to alternative ways of defining packets and routing such that we gain in all three 
dimensions. To explore this space, it may be helpful to ask ourselves challenge questions 
of the sort that a clean slate thought process invites, such as why do packets have to have 
addresses in them, or why do we need routing protocols? 
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